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ABSTRACT

Renewable energy sources are vital to reduce dependence on fossil fuels that are harmful
for the environment and release greenhouse gases causing global warming. Wind energy is a
natural source of energy that is abundant in the environment. While wind turbines are most
popular, convenient, and used to harvest energy at large scales, there have been recent studies
focusing on harvesting energy from the wind for micro devices. Such micro wind energy
harvesters can decrease dependence on batteries.

In this study, a novel, framed flag micro wind harvester was designed and tested, and its
behavior at three different wind speeds was experimentally examined in a wind tunnel. The main
purpose of this study is to determine the geometric and wind speed conditions under which
regular flapping occurs in the flag material.

A high-speed camera was used to visualize the motion of the harvester at different wind
speeds and at various parametric ratios of the flag material length to the frame length. The
movies taken by the camera are analyzed using Image J software to find the flapping frequency,
flapping angle, and the amplitude. Nondimensional parameters such as the Re number and St
number also are calculated.

This study finds that parametric ratios of 1.1 and 1.2 with the medium wind speed
condition of 5 m/s are optimal flapping conditions. These optimal conditions would conveniently
allow the use of piezoelectric material as the flag material in order to harvest energy. Further, an
advantage of this novel design over previous designs is that the wind harvester naturally aligns

with the wind direction and is thus omnidirectional.
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CHAPTER 1: LITERATURE REVIEW

1.1 Renewable Energy Harvesting

Renewable energy is an environmentally friendly method to extract energy from natural

sources like solar, wind, geothermal, and hydroelectric. Renewable energy has the potential to

decrease our dependence on fossil fuels and thus may slow global warming by their reduction of

greenhouse gas emissions and other negative environmental effects. The renewable energy

sources harvested from the natural sources that are mentioned above can be either used at the

macro level like solar farms and wind farms. Alternatively, renewable energy may take the form

of micro-scale applications for daily energy needs and the supply of energy for microelectronic

devices [1]. Types of energy harvesting are thus categorized as in Table 1.1.

Table 1.1 Types of Renewable Energy Harvesting Categorization. Adapted from Dikshit et al.

2010.

Type of Renewable
Energy Harvesting

Energy Source

Solution

Ultimate Goal

Electromagnetic
Heat

for powering portable

electronic devices

Macro Solar Energy management | Decrease fossil fuel
Wind solutions for utility dependency
Tidal scale

Micro Vibration Ultra-low power Driving low energy
Motion solutions especially consuming devices in

order to reduce
dependence on

batteries
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Energy harvesting from wind is a productive approach to get energy from natural
renewable sources for portable electronic devices. Applications of these devices, often used in
outdoor applications, varies from military applications to wireless electronic devices, and
unmanned air vehicles [2,3]. To supply these devices with energy, there has been a heavy
dependence on battery technology, but batteries are not environmentally friendly, must be
replaced periodically, and have a relatively high cost. On the other hand, extracting flow energy
from either water or air, which are accessible both outdoors and indoors, is an alternative method
to harvest energy in a more environmentally friendly manner [4]. Such harvesting technologies
have become more prevalent with new developments in the wireless power technologies which
need new and alternative power supply methods.

Several mechanisms exist to harvest energy from ambient sources like solar, wind,
chemical, and thermal sources. These include piezoelectric, thermoelectric, photovoltaic,
triboelectric, pyroelectric and combinations of them [5,6,7,8,9,10,11]. These main harvesting

technologies are shown in Figurel.1[12].

Energy
Harvesting

v .
Application Working
Fiald Principla
{ ' ' '
Solar Tharmal AF Mation

= - 1 -
L L ' L 4 l L4 Y A ¢ L 4 *
Electromagnetic Electromagnetic
{RF) (Mechanical)

Elecirostatic Piezoeleciric

Photlovoltaic | Seabeck

Figure 1.1 Hierarchy of Main Energy Harvesting Technologies. From
"Piezoelectric energy harvesting solutions.” Calio, Renato, et al. Sensors 14.3 (2014): 4755-
4790.CC BY-NC-SA 3.0 Reprinted with permission.
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Piezoelectric materials have been utilized to harness mechanical energy by taking kinetic
energy from the wind and converting it to electrical energy. This principle is a convenient way to
harness wind energy in micro levels, which can be useful for devices needing small amounts of
energy.

1.2 Wind Energy Harvesting

Wind energy is generally created by the difference of pressure in the atmosphere, and so
air moves from a high-pressure region to a low-pressure region. This air movement is influenced
by the Coriolis and centrifugal forces by the rotation of the earth, and the power occurring in the
wind can be calculated with the following equation:

P= %pAuoo3 (Equation 1)
where p is the density of the air, P is the power of wind, A is the cross-sectional area under
consideration, and u,, is the constant wind speed. From this equation, wind power changes by
the cube of wind speed.

Wind energy harvesting can be categorized as macro-level harvesters or micro-level
harvesters depending on their physical dimensions like length or diameter. Nabavi et al.
identified 75 mm as the boundary between micro-level harvesters and macro-level harvesters
[13].

Macro level wind harvesters are wind turbines which convert wind energy to rotational
mechanical energy. With the technological advances materials science in terms of using cheaper,
more efficient materials and different useful manufacturing methods like using composite
materials in last decades, these wind turbines are now the second most used renewable energy

source after solar energy. In addition, the power density of the wind is coming second most
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common useful ambient source after solar energy available for outdoor energy sources shown in

the Table 1.2 [13].

Table 1.2 Power Density Comparison for Ambient Energy Sources. Adapted [reprinted] from
Nabavi, S., & Zhang, L. (2016). Portable wind energy harvesters for low-power applications: A

survey. Sensors, 16(7), 1101. CC BY 4.0 Reprinted with permission.

Ambient Source

Power Density

Solar in outdoor 100 mW/cm?
Wind at 4.47 m/s speed 10.4 mW/cm?®
Thermal at AT =5 °C 60 pW/cm?

Water drop with size of 0.35 mLat 3.43 m/s speed

30.67 pW/cm?

1.2.1 Macro Scale Wind Energy Harvesting (Wind Turbines)

When wind (air flow) blows, low pressure air downwind pulls the turbine blades, causing

them to turn by the effects of lift. Then the rotating blades turn a shaft connected to a generator,

and finally, when generator rotates, electricity is produced. This principle summarizes roughly

how to produce electricity by a wind turbine and is seen in Figure 1.2 [14].

Figure 1.2 Wind Turbine Basic Operation Principle. Public Domain Image.

Wind turbines can be classified in three general ways: these are a) orientation of the axis

of rotation (vertical or horizontal), b) type of aerodynamic force that rotates blades (lift or drag),
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and c) energy-producing capacity (micro, small, medium, macro) [15]. The most prevalent wind
turbine design is a horizontal- axis wind turbine because it has much higher efficiency than
vertical-axis wind turbines [15]. Figure 1.3 includes the detailed components of a horizontal-axis
wind turbine. It has generally a rotor, gearbox, a generator, and yaw system. A rotor as shown in

the figure has two parts, the blades and the hub [16].

Pitch

L )
' Low-speed

7 Shaft
‘ : Gear Box

Rotor
(Blades, Hub)

Stator

Rotor Anemometer
Controller

Wind
Direction
|
Vane
. Yaw Motor— ‘- ( acelle
Blade ) | Speed Shaft
Tower Generator

Figure 1.3 A Horizontal-Axis Wind Turbine System Components. Public Domain Image.
Another major wind turbine design is the “Vertical Axis Wind Turbine’. In these type
turbines, blades turn vertically with respect to the wind flow direction. One of the most common
vertical axis wind turbines is ‘Darrieus-type VAWT’ that is invented by French scientist
Darrieus. In this type of application, blade shapes and type can be changed by different designs

to harvest more energy from wind. In addition, VAWT turbines are omnidirectional, which
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means that they can scavenge wind energy from any direction thanks to the design of blades seen

in the Figure 1.4 [17].

Figure 1.4 Darrieus-Type Wind Turbine. Retrieved from
https://images.nrel.gov/bp/#/folder/207425/51085242 ‘NREL Image Gallery’, Image number:
42794.jpg. Reprinted with permission.

1.2.2 Micro Scale Wind Energy Harvesting

Wind energy harvesting at the micro level has been explored for three decades since the
wind has excellent energy potential to harness clean energy by exciting piezoelectric materials
for outdoor, low power requirements. Conventionally, batteries have been used to meet the
energy needs of outdoor microelectronic devices and sensors. However, since batteries have
some disadvantages like replacement difficulties, high costs, and the high environmental cost of
disposal, researchers have been focused on micro-scale energy harvesting technologies which
may replace batteries. Tanvi Dikshit et al. [1] mentions that piezoelectric energy harvesting is a
motivation to utilize clean energy because of the disadvantages of batteries stated above.

Microscale wind harvesting techniques can be categorized into two different methods,
rotational harvesters and aeroelastic harvesters. In rotational harvesters, wind energy is

transformed into rotational energy using the same techniques as in the large wind turbines
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(explained in the previous section) but at a much smaller scale where, depending on the
application, either piezoelectric materials or mechanical techniques are used to gather energy.
However, for aeroelastic harvesters, the driving mechanism is to harvest wind energy by using
vibration phenomena created by wind flow through the aeroelastic material properties of the
harvester.

When a fluid (air in this study) flows, that flow may vibrate an aeroelastic material and
aerodynamic phenomena such as vortex shedding, fluttering, and galloping may happen near or
on the structure [13]. Vortex-induced vibration occurs when air flow moves around a bluff body
located just before a wind energy harvester. That bluff body creates vortices that are known as
‘Karman vortices’ around the wind energy harvesters. These vortices create motion of the
harvester at some frequency, and the relationship between this frequency and the Strouhal

number (St) is [15];

St = FD (Equation 2)
where U is wind speed, D is the characteristic dimension (diameter for circular cylinder,
hydraulic diameter for channel different than circular shapes, and chord length for wings), and f
is the frequency of harvester. The Strouhal number depends not only the body shape of harvester
but also Reynolds number, which is an essential dimensionless number to characterize the flow.
Re can be calculated as

UD

Re = — (Equation 3)

%
where v is kinematic viscosity of fluid depending on density of fluid p, and dynamic viscosity

shown in the equation 4:

Ww=pv (Equation 4)
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Common aeroelastic wind harvester mechanisms are shown in Figurel.5 [13].

/ s i ! Wind Flow
- f—"

) - =
s = @ = )
[ 7= 1 . g B D e — ;
- g > 3 /
E e =
2 S l s a : : - Anchor
Anchor Pt §
1: 1 N Arrfoil
(A) \ (B)
Bluff body

Wind Flow

s :II . =8
2 5 =
f =
S i L > a
\ - = Anchor S s
Anchor el
(C) (D) A\ .
Leaf

Figure 1.5 Common Aeroelastic Mechanisms for Energy Harvesting; (A) Vortex Shedding,
(B) Flutter, (C) Galloping, and (D) Flapping Leaf. From Nabavi, S., & Zhang, L. (2016).
Portable wind energy harvesters for low-power applications: A survey. Sensors, 16(7), 1101.
CC BY 4.0 Reprinted with permission.

Reynolds number is one of the critical parameters to define the fluid flow and
characterization of vortices that occur behind abluff body. Flow behavior can be understood
depending on Re, and it can be seen that vortices change with changing Re.

At different Re number, the effect of vortices in terms of flapping frequency and flapping
angle with different amplitudes create different regimes with different vortices [18]. Flapping
occurs in the fluid flow for both Re between 40 and 150 and Re higher than 3.5x 10° [18]. Other
than these two different regimes stated by Lienard, flapping cannot be seen in the desired level of
vibration which triggers a flag to flap.

Vibration is a usually undesirable effect on structures like bridges, buildings, and traffic

signs, but, in the application of wind energy harvesters, it can be a beneficial effect through the

use of piezoelectric materials. When a mechanical load happens on the piezoelectric material,
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electrical potential occurs due to the electron and proton separation inside the material by the
load. This electrical potential difference can be easily converted to electrical energy with a
simple circuit.

1.3 Micro Wind Harvester Designs

Micro wind harvesters can be categorized by the physical principle of how they scavenge
energy from the wind. In this section, four different harvester designs in the literature are
reviewed. These are i) rotational wind harvesters, ii) piezoelectric cantilever type harvesters, iii)
vibration induced harvesters, iv) flag-like harvesters. These types of designs are reviewed with
their conceptuality, methods, and results.

i) Rotational wind harvester designs:

In these applications, the harvester mechanism is similar to the one used in wind turbines.
Wind flow rotates the blades of the turbine, and this rotational energy is converted to linear
energy which excites the piezoelectric based material.

One of the best examples of the rotational harvester is called ‘windmill’, which is
designed by Priya [20]. In his research, ten bimorph transducers organized around the
circumference of the device are shown in Figure 1.6. In this design; similar conventional
windmill design like harvester was used with the blades made up piezoelectric material. When
wind reaches around the harvester, the blades of the windmill turns and by means of this rotation

piezoelectric bimorph blades vibrates inside the pitch up to the stopper.
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Piezoelectric

-\ L ™
‘w Ball bearing
Windmill

Supporting rod
Shaft :r/ s windmill

U
Weight «—-q U\ O
Cam

Figure 1.6 Configuration of Piezoelectric Windmill Design by Priya. From Priya, S. (2005).
Modeling of electric energy harvesting using piezoelectric windmill. Applied Physics
Letters, 87(18), 184101. Copyright © 2005 American Institute of Physics. Reprinted with
permission.

Another rotational piezoelectric energy harvester created by Zhang et. al [21] using
rotational piezoelectric harvester consists of turntable with three blades, PVDF (polyvinylidene
fluoride) beam, rotating shaft, and fan. The operation principle of their design is converting the
rotational movement to periodic oscillation on the PVDF beam. When air flow rotates the fan,
turntable rotates by means of rotating shaft attached to fan and blade touches the PVDF beam.
They obtained maximum output power of 2566.4uW at the wind speed of 14 m/s with their
design.

In the *piezoelectric compact wind turbine’ design created by Karami et al. [22] They put
magnets just under the disc which blades attached to, in order to create electromagnetic induction
between them to tip magnets with different orientation of the magnets. In figure 1.7 the

configuration of magnets with the compact turbine design is shown.

10
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u
1’

Figure 1.7 Configuration of a Piezoelectric Compact Wind Turbine. From Karami, M. A.,
Farmer, J. R., & Inman, D. J. (2013). Parametrically excited nonlinear piezoelectric compact
wind turbine. Renewable energy, 50, 977-987. Copyright © 2012 Published by Elsevier Ltd.

Reprinted with permission.

Tao et al.[23] proposed a piezoelectric harvester design that relies on converting
rotational motion to linear motion using a “Scotch yoke” mechanism attached to the wind turbine
by a shaft and attached to a piezoelectric bar by a spring. In their design, when air flow rotates
the three-bladed wind turbine, the Scotch yoke mechanisms converts the rotational motion to
linear motion, which induces piezoelectric bars in different sides by two different springs and
levers. This device with its components and mechanisms is shown in the Figure 1.8. Their
research results demonstrate that there is a possibility to reach up to power of 150 W with this

harvester in designated wind speed and angular velocity conditions that are 7.2 m/s and 50 rad/s,

respectively.

Figure 1.8 Design of Piezoelectric Wind Harvester with Scotch Yoke Mechanism. From Tao, J.
X., Viet, N. V., Carpinteri, A., & Wang, Q. (2017). Energy harvesting from wind by a
piezoelectric harvester. Engineering Structures, 133, 74-80. Copyright © 2016 Elsevier Ltd.
All rights reserved. Reprinted with permission.

11
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i) Piezoelectric cantilever type harvesters;

Taylor et al. [24] came up with another idea called “eel”, which uses piezoelectric strips
actuated by surface ocean waves (in the water) instead of air flow. Li and Lipson [21] used the
similar technique with Taylor et al. [24] but with airflow excitation by vortex induced vibration
(VIV) to harvest energy from a “piezo-leaf” where polyvinylidene fluoride (PVDF) material is
attached to a cantilever stalk. Their ‘piezo leaf” design has many advantages including low cost,
light weight, scalability, robust structure, attractive bio-compatible design, and easy installation,
operation, and maintenance [25].

Gao et al. [4] designed a different piezoelectric flow energy harvester that they called
PFEH (Piezoelectric Fluid Energy Harvester). This design comprises a piezoelectric cantilever
with a cylindrical extension. In their design, the piezoelectric cantilever is fixed into the base, but
other end is attached to the cylindrical extension which leads it to vibrate at the same frequency
as the PFEH. In their prototypes, they used Stainless steel and lead zirconate titanate (PZT) that
is thicker and stiffer than polyvinylidene fluoride PVDF but has a higher piezoelectric coefficient
to compare their behaviors. They reported that the voltage and generated power was higher in
turbulent excitation than in laminar flow.

PVDF and PZT materials were preferred in most of the studies. It is understood that
PVDF is more efficient than PZT because PVDF has a higher piezoelectric coefficient, as stated
by Gao et al. [4]. Vatansever [26] investigated energy harvesting from wind flow and water
droplet renewable sources using PVDF and PZT. He concluded that more power can be utilized
from a polymer-based material (e.g. PVDF) than from a ceramic-based material (e.g. PZT). He

stated that piezoelectric polymer materials such as PVDF have much more possibility to produce

12

www.manaraa.com



energy from both rain drops and wind. In his study, for example, maximum peak voltage was

produced around 61.6 V at 10 m/s wind speed with PVDF sample (LDT4-28K).

=l L/

Wind flow

Mode | Mode II Mode [Il | Stainless Steel

Figure 1.9 Diagram of Three Different Modes Used in the Design of Dong Jun Li et al. From Jun
Li, D., Hong, S., Gu, S., Choi, Y., Nakhmanson, S., Heinonen, O., ... & No, K. (2014). Polymer
piezoelectric energy harvesters for low wind speed. Applied Physics Letters, 104(1), 012902.
Copyright © 2014 AIP Publishing LLC. Reprinted with permission.

Dong Jun Li et al. [27] fabricated a polymer piezoelectric energy harvester that is called
P(VDF-TrFE) for low wind speed conditions. They tested their material in three different modes
that are shown in Figure 1.9. They found that maximum power generated as 0.98uW with their
new material in the Mode 1 configuration at 3.9 m/s wind velocity. This harvester designed as a
cantilever beam type where piezoelectric material fixed in one side shown in the Figure 1.9 as
well as with three different mode configurations in terms of the harvester configuration and wind
direction.

Kwon [28] proposed a t-shaped piezoelectric cantilever to harvest energy from fluid flow.
In this design, when air flow arrives from the wider side of the cantilever, it creates fluttering of
the piezo ceramic elements that are patched on the base side. He stated that continuous
maximum power output of 4 mW in the wind speed of 4 m/s is produced by the harvester.
Another flutter-based wind energy harvester studied experimentally by Li et al. [29] used

dangling crossflow fluttering instead of parallel flow fluttering. They designed and tested three

different PVDF stalk that have long, short, and narrow-short stalks. In their different
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experiments, these researchers measured a maximum power density of about 2 mwW/ cm? in
crossflow narrow-short stalk.

Sirohi and Mahadik [30] proposed wind energy harvesting device consisting of two
piezoelectric sheets attached to the cantilever beam which creates a galloping motion due to its
equilateral triangle cross section exposed to the wind flow. They compared their experimental
results with an analytical model. Finally, they reported that their device produced more than 50

mW at 11.6 mph wind speed condition with the galloping phenomena shown in the Figure 1.10.

Piezoelectric sheets

Clamped
end

Galloping
7 motion

~

Incident wind

Figure 1.10 Galloping Energy Harvester Designed by Sirohi and Mahadik. From Sirohi, J., &
Mahadik, R. (2011). Piezoelectric wind energy harvester for low-power sensors. Journal of
Intelligent Material Systems and Structures, 22(18), 2215-2228. Copyright © 2011, © SAGE
Publications. Reprinted with permission.

Most studies of the piezoelectric wind harvesters use designs in which the air flows in
only one direction, but Zhao et.al [31] designed an arc-shaped piezoelectric harvester which
provides energy from air flow coming in multiple directions. They created a new design to
respond to multi-directional wind flow excitations; this design therefore has the opportunity to
scavenge more energy than conventional designs. An analytical method was used to understand

the behavior of an arc-shaped elastic beam as a wind harvester. Finally, in 2-17 m/s wind speed

range they created 1.73 Mw maximum power output at wind speeds of 17 m/s.
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iii) Harvesters using vortex-induced vibration phenomenon;

Weinstein et al. [32] proposed a harvester excited in heating, ventilation, and air
conditioning (HVAC) flows using a vortex shedding phenomena created when vortices reach an
aerodynamic fin located at the end of a piezoelectric cantilever. This study shows that
piezoelectric harvesters can be used in HVAC ducts where air flow is available. They found that
the power outputs generated with the proposed design were 200 uW and 3 mW for flow speeds
of 2.5 m/s and 5 m/s, respectively. They stated that these power outputs are adequate for
powering wireless sensor nodes for HYAC monitoring systems or other sensors.

Sivadas and Wickenhiser [33] studied the effects of the geometry of bluff bodies using
vortex-induced vibration techniques on the power output produced by piezoelectric material. Out
of three different bluff body shapes (e.g. cylindrical, triangular, and pentagonal) they achieved
the highest power of 0.35 Mw using the cylindrical bluff body shape at Re=300-1100 for a beam
length of 0.04 m and diameter of 0.02 m.

iv) Flag-like harvesters;

Recently, Orrego et Al. [34] designed a novel inverted piezo electric flag-like wind
harvester. These researchers performed experiments both in a small-scale wind tunnel but also
tested their design in the field. They tested it in ambient wind conditions which have
intermittency of wind and potential leakage of electrical charges into the circuit as pointed out

before by Zhao L.[35] and Zhao L, Yang L.[36] respectively.
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Piezo-Flag

Figure 1.11 Inverted Flag Orientation Designed by Orrego et al. From Orrego, S., Shoele, K.,

Ruas, A., Doran, K., Caggiano, B., Mittal, R., & Kang, S. H. (2017). Harvesting ambient wind

energy with an inverted piezoelectric flag. Applied energy, 194, 212-222. © 2017 Elsevier Ltd.
Reprinted with permission.

Orrego and co workers used an inverted flag design as seen in the Figure 1.11, which
means that the flag is fixed at the trailing edge (relative to the direction of the wind) and it’s
leading edge is free to oscillate in response to air flow. These researchers tested different flag
material bending stiffnesses and mass ratios to determine characteristic flapping behaviors under
these conditions.

Furthermore, they tested their design in the ambient wind conditions where the wind
direction could change and finally they used the harvested energy to operate a temperature
sensor. As a result of their study in the wind tunnel with the controlled wind conditions, they
reported that a peak electrical power of around 5.0 mW/cm? reached at a wind velocity of 9m/s,
while they got 0.4 mW/cm? even in low speed conditions around 3.5 m/s.

Silva-Leon, Jorge et. al [37] improved Orrego’s and co-workers’ inverted flag design by
adding flexible solar panels into the inverted flag to compare and investigate their wind/solar
energy harvesting device in both piezo-only design and piezo/solar design. The purpose of the

solar panels was to eliminate the intermittency of power generation by the wind alone. They

therefore investigated the harvesting capabilities of flexible solar panels and piezoelectric strips
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attached to the inverted flags with 1.8 Klux constant light exposure in laboratory conditions at a
different wind conditions available in the wind tunnel. They concluded that their total power
output is around 5mW, which is the same as measured by Orrego et al.. However, they presented
a novel idea with the integration of flexible solar panels that provides up to 3 mW power; these

can be useful for some small-scale portable electronics when only a solar source (and no wind) is

available to harvest energy.
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CHAPTER 2: MODEL AND DESIGN

2.1 Introduction

In this thesis, a novel, flag-like wind harvester consisting of a flexible flag material
attached at its leading and trailing edges to a surrounding rigid frame has been studied. This
design fits into the flag-like wind harvester design category reviewed in Section 1.3 in terms of
the physical principle used to scavenge energy from the wind. The mechanical principle in this
study is the same with the flapping flag like wind harvesters. While in the inverted flag designs
reviewed in Section 1.3, wind blows from the trailing (i.e. free) edge to the leading (i.e. attached)
edge of an aero elastic material, in this design wind blows from the attached edge (along which
the flag may pivot) to the trailing, free edge. A parametric study is conducted to determine the
optimum design conditions to maximize flapping of this device.
2.2 Harvester Concept and Design

A model wind energy harvester was designed to understand the effects of air flow on a
flag-like wind harvester with a rigid frame. The variables under consideration in designing this
model included the ratio of the frame height to the frame length, the ratio of the frame length to
the flag length, and the wind speed. Previous wind energy harvesters have used piezoelectric
material to convert mechanical strain caused by the wind into electrical energy. However, before
incorporating piezoelectric materials into the current model, it is essential to find optimum
design conditions (which depend on the flag and frame dimensions and the wind speed) which

maximize the desired reciprocating behavior. In this study, the main aim is thus to find the
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optimum geometry, design, and parameters to be useful for a piezoelectric flag-like wind
harvester.
2.2.1 Concept

The wind energy harvester model consists of a shaft, frame, and flag. The shaft was made
of polymer-based material; it has a bearing in one end which allows the entire apparatus to
rotate. Secondly, the frame was 3-D printed using PLA (Polylactic acid) filament. The flag itself
was made of a flexible polypropylene plastic material chosen for its durability to wind flow. As

shown in Figure 2.1, the flag material is fixed at two sides of frame using three clamps.

%

\

L (FLAG LENGTH)

O

AN

1

W
FRAME LENGTH)

Figure 2.1 Schematic of the Setup Giving Flag and Frame Dimensions.

In this model, L stands for frame length, H stands for the flag height, and W stands for
the flag length. The variable U is the wind speed. In order to determine the behavior of flags with
different dimensions, a parametric ratio and the aspect ratio were used. The parametric ratio
(PR= (WI/L)) is the ratio of the flag length W to frame length L. Another ratio, the aspect ratio
(AR= (L/H)), is the rate of the frame length L to the flag height H. Flag and frame dimensions

with different parametric ratios that are 1, 1.1, 1.2, and 1.3 are shown in detail in Table 2.1. Flag
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and frame dimensions were designed such that the device would fit into the wind tunnel to be
described subsequently.

Table 2.1 Experimental Sample Matrix Table

FLAG DIMENSIONS (H x L) [cm]
FRAME
V=R PARAMETRIC RATIO (PR)
& L] sxs 1) 5%5 2) 5x5.5 3) 5x6 4) 5x6.5
o<
5 O L5 5x75 5) 5X7.5 6) 5x8.25 7) 5x9 8) 5x9.75
<<
| 2 | 5x10 9) 5x10 10)5x11 11)5x12 12)5x13
2.2.2 Design

The design consists mainly of three parts, the base, shaft, and harvester. In the base
section, an aluminum rod, base flange, bearing flange, and bearing were used. The shaft was
used to enable rotation (owing to the bearing) and to attach the harvester. The harvester in this
study was designed as regular flag that is built flag material surrounded by a rigid frame. An

image of the completed design is shown in Figure 2.2.
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After the construction was done from base to the upper side of shaft, flag material is
bonded to two sides of the frame with heavy duty staples. The flag with frame is attached to the
shaft that is free to rotate with three clamps and the design is centered in the wind tunnel. The
flag is thus free to rotate around its leading edge (where the shaft is located) and the shaft
diameter (of 0.25 inches) was minimized o reduce bluff body effects on the flag, and flexible
polypropylene material was used to have simultaneous motion on the flag and frame.

2.2.3 Wind Tunnel and Orientation

The harvester was oriented in the center of the wind tunnel such that the air blows from
the leading to the trailing edge (i.e.as a regular flag in order to attach the harvester rod, and
flanges was used below the surface of the wind tunnel. In the Figure 2.3, the orientation of the

whole construction in the wind tunnel is shown.

Figure 2.3 Orienation of the Harvester in the Wind Tunnel
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An available wind tunnel is used to examine the behaviors of the harvester with three

different wind speeds. The cross-section diameter of the wind tunnel is 12 inches.

Figure 2.4 Wind Tunnel

2.2.4 Methods

In order to systematically examine the behavior of the harvester, three parameters, the
parametric ratio PR, aspect ratio AR, and wind speed U, are varied in this parametric study. PR
is used to understand and find the ideal geometrical dimensions to investigate the relationship
between the flag and frame lengths. Further, AR is varied to investigate how the frame height
and length affect harvester performance.

Wind speed is another vital parameter in this study. Three different wind speeds were
used to analyze the behavior of the harvester at different values of U. Because the speed of the
fan in the wind tunnel could not be varied, the wind speed was set by increasing the resistance at
the wind tunnel entrance. This was done by applying one or two layers of a fabric material at the
wind tunnel entrance. While crude, this decreased wind speed from 16 m/s to 5 m/s with one
layer to 2.5 m/s with two layers of fabric. These three wind speeds were measured by an
anemometer (AMGAZE GM816 Digital Anemometer) in the center of the wind tunnel where the

harvester was located.
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Behaviors of the harvester with different parametric and aspect ratios in three wind
conditions are analyzed with the videometry techniques using the high-speed camera seen in
Figure 2.5. In addition to the camera two LED lights were focused on the harvester to get
brighter images as well as setting the camera position thanks to the adjustable mounter. In
capturing images by camera, a frame rate of 200 frames per second (fps). The camera was
mounted above the test section of the wind tunnel looking downward to take videos of the flag
harvester. Videos are processed in the Image J program after taken by at least 10 different
measurements and the mean of the results with the standard deviation. In Figure 2.5, the

orientation of high-speed camera and other tools are shown.

Figure 2.5 Expeimental Setup. of High-speed Camera
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2.3 Processing and Analysis

A high-speed camera (Edgertronic SC2X-1910 fps @ 1080p) was used to see the
movement of flag in three different wind speed conditions for each twelve samples to determine
optimum flapping scenario. These 36-data series were analyzed in ImageJ as described below.

In ImageJ, important parameters such as flapping frequency and flapping angle were
measured at minimum ten times for each sample in three different wind conditions. The mean
and standard deviation of the measured values were then calculated. In addition, the flapping
behavior of each set of conditions was categorized based on the video. Four different behaviors
that will be discussed in detail in the next Chapter were found in this way. Flapping frequency
and flapping angle were observed as a driving parameter for reciprocating mechanism in the
program.

When flapping of the harvester occurs, the flapping period was defined as the time
required for the flag frame to move from phase 1 to phase 2 and return to phase 1, as shown in
Figure 2.6. The inverse of the flapping period then gives the flapping frequency. The flapping

angle (©) also was measured in ImageJ using the angle measurement tool.

F'igure'2.6 Measurement c'Jf'FIa'pping Parameters
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Flapping amplitude was calculated by the length of the frame and the flapping angle. The
calculation formula using trigonometric relation is shown as in equation 4:
A=2xLx sin(g) (Equation 4)
After measuring the parameters of flapping, it is essential to find the dimensionless
numbers, Re and St, for defining the flapping behavior in terms of the dynamic of the wind flow.
Re depends on the velocity of wind, the characteristic length (the frame length), and the dynamic
viscosity of air, while St depends on flapping frequency, amplitude, and the wind velocity. These
dimensionless numbers were calculated based on the following equations.

Re = L& (Equation 5)

St = %A (Equation 6)
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CHAPTER 3: RESULTS

3.1 Description of Modes

Based on the recorded high-speed movies, the harvester behavior is categorized into four

different flapping modes. These are a) stable b) regular flapping c) irregular flapping, d) sinuous

motion. Four different modes are distributed by wind speed, the parametric ratio, and the aspect

ratio. Table 3.1 shows that distribution clearly as a function of aspect ratio, parametric ratio, and

wind speed. These four behaviors are described subsequently.

Table 3.1 Distribution of Harvester Behaviors in Terms of Parametric Ratio, Aspect Ratio, and

Wind Speeds
FRAI\élEO FLAG DIMENSIONS (H x L) [cm] AND PROPERTIES
DIMENSION
(H X W) [cm] PARAMETRIC RATIO (PR)
1 1.1 1.2 1.3
5x5 5x5.5 5x6 5x6.5
Wind velocity Wind velocity Wind velocity
— g Wind velocity [m/s] [m/s] [m/s] [m/s]
2.5 5 16 2.5 5 16 2.5 5 16 2.5 5 16
(3
<
‘O" 5x75 5x8.25 5x9 5x9.75
= 10 Wind velocity Wind velocity Wind velocity
é 22| = [ Wind velocity [m/s] m/s] [m/s] m/s]
5 . 2.5 5|16 | 25 [ 5| 16 | 25 | 5 | 16 | 25 | 5 | 16
LLI
[a
2 5x 10 5x11 5x 12 5x 13
o Wind velocity Wind velocity Wind velocity
o~ [ 2 [ Wind velocity [m/s] [m/s] [m/s] [m/s]
. 2.5 5 16 2.5 5 16 2.5 5 16 2.5 5 16

BEHAVIOR SCALE OF FLAG EXPOSED TO THREE DIFFERENT WIND SPEED

stable

irregular flapping

sinuous motion

regular flapping

26

www.manaraa.com



It is seen from Table 3.1 that regular flapping occurred for PR=1.1-1.2 and all values of
AR. Regular flapping mostly occurred for all wind speeds at AR=2 but occurred for fewer wind
speeds with differently shaped frames (i.e. different values of AR). Regular flapping is the
preferred mode of motion because the regular flapping of the flag and oscillation of its frame
facilitates extraction of energy. This mode will be analyzed further subsequently.
3.1.1 Stable

This mode describes when the flag and frame both remain stationary in response to the
air flow. This lack of motion can be shown by the consecutive images taken by high speed
camera in Figure 3.1, which show that the mode is defined as physically *stable’. Images taken
for the AR of the 1 with the 1.1 PR at the wind speed of 2.5 m/s are shown as a sample of this

mode in the Figure 3.1 These images are separated by 8 milliseconds in time.

Figure 3.1 Representation of the FIagCondition for Stable Mode in Each 8 ms in Time
(AR of 1 And PR=1.1 at 2.5 m/s Wind Speed)
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In this mode, flag does not move in any direction with the different wind speed. This
mode mostly occurs in the harvester when PR=1 and for all AR of 1 for all values of wind speed.
3.1.2 Irregular Flapping

Irregular flapping occurs when the flag flaps to some degree, but it may stop and start
flapping irregularly. It is thus difficult to obtain a value of the flapping frequency and flapping

angle; therefore, the flag’s behavior is noted as irregular motion.

. ]
-

Figure 3.2 Representation of the Flag Condition for Irregular Flapping Mode in Each 50 ms of

the Time (AR of 1.5 and PR=1.1 at 5 m/s Wind Speed)
The images for this case are separated by 50 milliseconds in time in Figure3.2. This mode
as a transition between the stable mode previously described and the regular flapping mode

(described subsequently).
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3.1.3 Regular Flapping

Regular flapping occurs when the flag and its frame regularly oscillate from Phase 1 to
Phase 2 and back again to Phase 1, as shown in Figure 3.3 In this mode, flapping frequency and
the flapping angle with the amplitude can be measured exactly. It is called regular flapping

because the flag material flaps as shown in Figure 3.4,

Phase 1 At=25 ms (time difference in each images)  Phase 2

Frame Flag material

Figure 3.3 Representation of the Flag Condition for Regular Flapping Mode in 25 ms Time
Difference in Each Image (AR of 2, PR=1.1 at 16 m/s Wind Speed)

Representation of Frame Representation of Flag material

Figure 3.4 Representation of the Flag and Frame Positions in 25 ms Time for the Regular
Flapping Sample (AR of 2 and PR=1.1 at 16 m/s Wind Speed)
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3.1.4 Sinuous Motion

Sinuous motion occurs when the flag frame remains largely motionless, but the flexible
flag material exhibits a sinusoidal, snake-like motion along the trailing edge of the flag. Because
of its sinuous shape, the flag does not flap regularly with the frame. In Figure 3.5, for the sample
(AR of 1.5 cm with PR=1.3 at 16 m/s wind speed) the motion of the flag is seen by consecutive

images in 25 milliseconds in time.

| Figure 3.5 Repsentation of the Flag Condition for Sinuous Motion Mode in 25 ms Time
Difference in Each Image (AR of 1.5 and PR=1.3 at 16 m/s Wind Speed)

This mode does not allow measurement of flapping frequency and the angle. Further, this

mode mostly happens in higher wind speed and the higher parametric ratios. In higher parametric

30

www.manaraa.com



ratios the length difference between flag material and the frame is higher than lower parametric
ratios and it allows the flag material to accumulate in the trailing edge.
3.2 Analysis of The Behavior of The Flag in AR, PR, and Re

Because regular flapping is the most conducive mode to extracting usable energy, it will

be the focus of the remainder of this thesis, and the other modes will not be analyzed further.

12

X [ ) [ ) O
10

(o]
S s
S X ° O O
X
X ® Regular Flapping
5 © X Stable
= X [ ) O | )
S A Irregular flapping
e . .
@ 4 O Sinuous motion
S A [ ) [ ) O
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Parametric ratio (Lflag/Lframe)

Figure 3.6 Description of Modes with Their PR and Re Numbers
Three different frame geometries were used in this experimental study. Values of the
aspect ratio (AR) included 1, 1.5, and 2. The best regular flapping scenario occurred in the
frames with the AR=2 because this model had more available flag material to flap and deform

(and form an airfoil shape) in comparison to the two models with lower AR values.
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The desired scenario of regular flapping occurred for 9 out of 36 total samples, showing
that flapping occurred for one fourth of the total sample range.

The Reynolds number is another essential parameter describing the fluid dynamics. Thus,
another perspective matrix was created to understand where these four modes are in terms of
parametric ratio and Re number. Figure 3.6 gives this matrix in detail.

It is clearly seen that regular flapping mostly happened in the 1.1 parametric ratio flags
compared to the other three modes. In Section 3.3 the behaviors and the relations between the

behaviors and the parameters will be discussed in detail for regular flapping mode.

2.5 2.5
8 —_
£ 2 0O g 22X
15 OO0 < s
;
2 1 (0 OREGULAR 2 11X X X X X STABLE
< FLAPPING ot
x 0.5 °<‘ 0.5
<
0 0
1 111213 1 11 12 13
PR (Parametric Ratio) PR (Parametric Ratio)
2.5
2.5 .
— S 2 O
o 2 A A =
< g 15 0 O
15 A—A A o 00
&) ) 1
& 1 AIRREGULAR =~ < OSINUOUS
< FLAPPING % 05
= 0.5
0
0 1 11 12 13

1 11 12 13
PR (PARAMETRIC RATIO)

Figure 3.7 Relation Between AR and PR for Each Behavior

PR (Parametric Ratio)

In this study, in terms of geometry, the optimum condition can be examined with respect
to the relation between aspect ratio and parametric ratio as well as the harvester’s behavior on the

parametric ratio with 1.5 and 2 aspect ratios of the harvesters.
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In Figure 3.7 the relationship between AR and PR for each behavior is shown. In order to

understand where each behavior stands in terms of the geometric parameters that are AR and PR

in this study, so the geometric features of each behavior can be seen in the figure 3.7 in detail for

each mode.

3.3 Analysis of Regular Flapping

Table 3.2 shows AR, PR, wind speed, mean + standard deviation of flapping frequency,

mean + standard deviation of flapping angle, and mean + standard deviation of flapping

magnitude for experiments in which regular flapping was observed.

Table 3.2 Experimental Analyzed Values of Flapping Frequency, Flapping Angle, and the

Amplitude on the Regular Flapping Samples

Wind_ Mean Flapping . Mean
|(_f|3m) \(/(\:/m) I(_cm) AR | PR \Jelocny Frequency Xﬁgﬂe 'E(Iji%?:;g) Amplitude

(mis) (Hz) (cm)
5 5 55 |1 |[11/16 20.44+0.89 8.33+1.04 0.73+0.10
5 75 |825 Ls 11116 19.27+0.89 30.09+1.39 3.89+0.20
5 75 |9 12125 4.63+0.13 42.05+3.04 5.38+0.48
5 10 11 2.5 4.96+0.25 18.33+4.22 3.19+0.81
5 10 11 2 1115 5.47+0.47 23.01+3.41 3.99+0.65
5 10 11 16 18.3+1.6 20.14+0.92 3.50+0.18
5 10 12 2.5 5.04+0.12 34.88+1.93 5.99+0.40
5 10 12 (2 |12]|5 5.27+0.21 40.05+2.92 6.85+0.61
5 10 12 16 21.5+2.3 23.16+2.07 4.01+0.43

In this table, the mean and standard deviations of the flapping frequency for the 9

samples where regular flapping occurred are shown. It is clearly seen that the flapping frequency

increases with the wind speed.
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Further analysis of the regular flapping mode was performed using relationships
including U (wind velocity) vs © (flapping angle), U vs f (flapping frequency), and Re vs St. For

example, Figure 3.8 shows the flapping frequency plotted as a function of the wind speed.
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Figure 3.8 Mean Flapping Frequency as a Function of Wind Speed for the Regularly Flapping

Mode

It is obviously seen that flapping frequency rises with wind speed in all cases. The lowest
flapping frequencies (around 5 Hz) are seen in the lowest wind speed of 2.5 m/s, and medium
frequencies (around 5.3 Hz) are noticed in the wind speed of 5 m/s while the highest flapping
frequencies (about 20 Hz) are detected in the highest wind speed (of 16 m/s).

In order to understand the behavior of the wind speed with the AR and PR, the sample
AR=2 and a parametric ratio of AR=1.1 or AR=1.2 allows further examination of flapping
frequency for each wind speed condition. The flapping frequency in the wind speed of 2.5 m/s

for the AR=2 and PR=1.1is 4.96 Hz and it increases to 5.47 Hz in medium speed and to 18.3 Hz

34

www.manharaa.com




in the high wind speed (of 16m/s). When the PR=1.2 for the same AR (of 2), the flapping
frequency rises from 5.04 Hz to 5.27 and to 21.5 Hz, which is the highest possible frequency
measured. In other words, for the same AR, an increase in PR from 1.1 to 1.2 also increased the
flapping frequency. Regular flapping occurs for all wind speed conditions in just two different
aspect ratios that are 1.5 and 2 with the two different parametric ratios that are 1.1 and 1.2 in all
wind speed conditions.

In the same aspect ratio of AR=2, the flag with the parametric ratio of PR=1.2 achieved a
higher flapping frequency than the one with the parametric ratio of PR=1.1 because the flag
formed a better (e.g. higher lift-inducing) airfoil shape in the PR=1.2 case than in the PR=1.1
case. In the better airfoil shape, which occurs in the PR=1.2 case, the lift force also seems to be
formed closer to the trailing edge (further away from the pivot point). Thus, more torque around
the flag shaft is created in this sample. For the flag which has a parametric ratio of PR=1.1 the
lift force is generated around the middle point of the frame, which is closer to the pivot point
than in the PR=1.2 case (both for the same aspect ratio of AR=2). Therefore, the flapping
frequency is slightly lower in the PR=1.1 case than in the case with PR=1.2. Similarly, in the
samples with the same PR (PR=1.2) but with different values of AR (AR=1.5 and AR=1.2), a
higher frequency is seen in the flag with the lower AR due to the same reason described above in
terms of the shape of the flag material and the applied point of the lift force.

It can further be seen from Figure 3.8 that the flapping frequency does not vary much
with AR or PR for a given wind speed, especially at the two lower wind speeds. Since the
relation between wind speed and the flapping frequency is approximately the same for two

different parametric ratios for the same frame dimensions, this relation is not adequate to

35

www.manaraa.com



demonstrate the effect of parametric ratios for the optimum geometrical conditions with wind
speed and especially other fluid dynamic parameters that are Re and St.
Figure 3.9 shows the mean flapping angle plotted as a function of the wind speed. It is

given for each sample with their parametric ratios and aspect ratios.
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Figure 3.9 The Effects of the Wind Speed on the Flapping Angle in the Regular Flapping Mode

The same trend in flapping angle with increasing wind speed is seen for the different
combinations for AR=2 and different values of PR of 1.1 and 1.2. The highest Flapping angle
measured about 42 degrees for the sample with AR of 1.5 and PR of 1.2. In the samples of the
same AR of 2, when the PR increases from 1.1 to 1.2 the difference is about 17 degrees in low
and medium wind conditions, but in the high wind condition that is the speed of 16 m/s the

difference between flapping angles for the PR of 1.1 and 1.2 is around 3 degrees.
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For the comparison of the flag in the same aspect ratio of 2 with the parametric ratio of
1.1 and 1.2 flags, the flag with the PR of 1.1 has lower flapping angle than the flag with the PR

of 1.2 due to the same physical reason explained for the same samples in terms of the flapping

frequency.
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Figure 3.10 The Relation Between St and Re Numbers in Regular Flapping Mode

In the same PR of 1.1 with the AR of 1 and AR of 1.5 flag samples, the smaller flapping
angle occurred with smaller values of AR (e.g AR=1) because of the flag has low inertia than the
flag with AR=1.5 and so flag reciprocates in smaller flapping angles. However, the reciprocation
in the case of the larger AR (AR=1.5) is larger because of the rate of the mass of the frame to the
mass of the flag is greater.

In the figure 3.10, the relation between Re number and St number that are dimensionless
numbers is given. It is obviously seen that in this figure, in lower Re numbers, St number is

higher, and in higher Re numbers is St number is lower.
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When all three of these figures are examined together, optimum features of the flag and
frame begin to emerge. It seems that the 5x10 cm (AR of 2) frame with the parametric ratio of
the 1.2 is ideal in lower Re number which exist in lower wind speeds. In this study maximum
wind speed was 16 m/s but it is not ideal for real conditions, so optimum wind velocity is taken
in this study as 5 m/s because of the other responses of parameters like flapping frequency and
the St number. Further, the optimum parametric ratio would be found as PR=1.2 because the
highest flapping frequency was found for this design when the aspect ratio was set to AR=2 (e.g.
for the 5x10 cm frame dimensions). For further designs and improvements, piezoelectric flag
material can be attached to the design instead of the plastic polymer flag material used here. This
piezoelectric material should ideally be a PVDF material because it is seen in the literature that

PVDF is more convenient for its flexibility and the efficiency for the wind harvesting

mechanism.
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CHAPTER 4: DISCUSSION

4.1 Comparison of Other Micro Wind Harvesters

This design studied here is similar to the inverted flag-like harvester studied by Orrego et
al [34] in that flapping is the motion by which energy may be extracted. However, the key
difference is that the harvester designed by Orrego et al. [34] is an inverted flag, where wind
comes from trailing edge to leading edge while in this study the wind blows from leading edge to
trailing edge.

One advantage of the current design over previous flapping designs such as that by
Orrego et al [34] is that, because it can freely rotate on its shaft, it is able to gather energy from
wind coming from any direction. In contrast to previous designs found in the literature which are
directional harvesters, the device studied here is thus an omni-directional wind harvester design.
Furthermore, the device studied here naturally aligns with the wind direction and does not have
to be manually realigned, which is another advantage.

Three different wind speeds (low, medium, and high, or 2.5 m/s, 5 m/s, 16 m/s) are used
in this study to examine the effects of different wind speed conditions on the harvester. However,
it is understood that the high wind speed condition of 16 m/s is extremely high, is not often
found in the natural world, and is not practically useful for real wind speed conditions.
Therefore, the higher wind speed conditions can be neglected. The lower wind speeds studied
here are more realistic and are similar to those used in previous studies.

This design is easier to design than the designs are done in the literature using a novel

design that is having a frame around the flag to have an optimum reciprocation in the harvester

39

www.manaraa.com



and optimum flapping that is vital to harvest an energy using by piezoelectric material in the flag
material.

It can be understood with this study can be useful for harvesters, this study has great
opportunity to have optimum responses in lower wind speed with just having 10 and 20 % longer
flag material than frame length. Another advantage using this design as a harvester is, energy can
be harvested by two different ways that are using piezoelectric material and rotational energy
that is led by flapping angle. However rotational way is not an as attractive as piezoelectric wind
harvesting option for this design because of the narrow range of the flapping angle results.

Flapping angle is important to define in terms of design conditions. For example, in this
study, flapping angle was not outside of the range of the wind tunnel. In this study, flapping
angle only does not show that the flapping behavior of the flag in different dynamic conditions, it
must be analyzed with at least one other parameter that would be flapping frequency. Flapping
angle in this study helps to detect to the amplitude, which is an important parameter to calculate
Strouhal number, while the characteristic length was chosen the frame length for the calculation
of the Re number.

4.2 Future Design Implementation

This novel model design was experimentally investigated as a possible method of
scavenging energy from wind; however, no attempts to actually extract energy from the wind
were made. In order to harvest energy, a piezoelectric material would be added to or used as the
flag material instead of polypropylene plastic material currently used. This addition may possibly
affect the performance of the wind harvester because the piezoelectric material would likely have
a higher stiffness and mass per unit area. In addition, in the future this design should be tested in

outdoor conditions to see how it behaves under ambient wind conditions.
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In this study, high speed filming was used to show the flag motion in different harvester
geometries and different wind conditions. To measure the harvester output power density,
additional measurement devices, possibly including an oscilloscope for measuring flapping
frequency and voltmeter for measuring voltage created by the piezoelectric material, would need
to be added in order to compare the results with the filming results and to compare energy
scavenging performance with other harvester designs

Another future application would be using two piezoelectric material strips in each side
where phases are occurred to harvest energy via these piezoelectric strips when flag hits them in
its flapping period from Phase 1 and Phase 2. This future implementation is also can be useful

design to harvest wind energy with the integration of two piezoelectric strips to the regular

framed flag.
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